Computational thinking (CT) adalah terminology yang sekarang ini digunakan untuk merujuk pada ide dan konsep dalam penerapan berbagai bidang computer science (CS) atau Teknik informatika. Secara internasional, telah terjadi debat terkait pentingnya pemahaanakan computer science, tidak hanya dalam konten, tetapi juga sebagai salah satu kemampuan umum, terkait pemikiran yang kritis dalam dunia teknologi sekarang ini.
A. Computational Tinking (Berfikir Komputasi)
1. Pengertian Computational Thinking
Computational Thinking (CT) adalah sebuah pendekatan dalam proses pembelajaran. CT memang memiliki peran penting dalam pengembangan aplikasi komputer, namun CT juga dapat digunakan untuk mendukung pemecahan masalah disemua disiplin ilmu, termasuk humaniora, matematika dan ilmu pengetahuan. Siswa yang belajar dimana CT diterapkan dalam kurikulum (proses pembelajaran) dapat mulai melihat hubungan antara mata pelajaran, serta antara kehidupan di dalam dengan di luar kelas.
Berpikir komputasi adalah teknik pemecahan masalah yang sangat luas wilayah penerapannya. Tidak mengherankan bahwa memiliki kemampuan tersebut adalah sebuah keharusan bagi seseorang yang hidup pada abad ke dua puluh satu ini. Seperti juga bermain musik dan belajar bahasa asing, Computational Thinking melatih otak untuk terbiasa berfikir secara logis, terstruktur dan kreatif.
Istilah CT pertama kali diperkenalkan oleh Seymour Papert pada tahun 1980 dan 1996. Di tahun 2014, pemerintah Inggris memasukkan materi pemrograman kedalam kurikulum sekolah dasar dan menengah, tujuannya bukan untuk mencetak pekerja software (programmer) secara massif tetapi untuk mengenalkan Computational Thinking (CT) sejak dini kepada siswa. Pemerintah Inggris percaya Computational Thinking (CT) dapat membuat siswa lebih cerdas dan membuat mereka lebih cepat memahami teknologi yang ada di sekitar mereka.
Tidak hanya pemerintah inggris, di tahun yang sama lembaga non-profit dari Amerika Code.org menyelenggarakan beberapa acara untuk mempromosikan manfaat dari berlajar pemrograman. Mulai dari Computer Science Education Week untuk anak sekolah dan juga yang paling viral, Hour of Code. Program ini didukung oleh Bill Gates, Mark Zuckerberg, Jack Dorsey, Will.i.am dari Black Eyed Peas.
Bahkan Google pun terlibat untuk memfasilitasi guru untuk dapat menguasai CT yang merupakan salah satu kecakapan abad 21 yang harus dikuasai oleh peserta didik melalui kursus online. Dibanyak negara CT mulai diintegrasikan kedalam semua mata pelajaran, bahkan di beberapa negara untuk membantu dan mempercepat pengintegrasian dan penetrasi kearah Computational Thinking, mereka memasukan Computer Science (ICT) sebagai sebuah mata pelajaran wajib dalam kurikulum nasional mereka.
Problem Based Learning (PBL) merupakan elemen penting dari Science, Technology, Engineering, dan Matematika (STEM) yang ada pada pendidikan kita. Bahkan kini tidak hanya STEM tapi sudah berkembang menjadi STEAM dimana huruf “A” mewakili “Arts / Seni”. Karakteristik Berpikir Komputasi (CT) merumuskan masalah dengan menguraikan masalah tersebut ke segmen yang lebih kecil dan lebih mudah dikelola. Strategi ini memungkinkan siswa untuk mengubah masalah yang kompleks menjadi beberapa prosedur atau langkah yang tidak hanya lebih mudah untuk dilaksanakan, akan tetapi juga menyediakan cara yang efisien untuk berpikir kreatif.
Dalam pendidikan STEM, Berpikir Komputasi (CT) didefinisikan sebagai seperangkat keterampilan kognitif yang memungkinkan pendidik mengidentifikasi pola, memecahkan masalah kompleks menjadi langkah-langkah kecil, mengatur dan membuat serangkaian langkah untuk memberikan solusi, dan membangun representasi data melalui simulasi.
2. Metode Computational Thinking
Decomposition : Kemampuan memecah data, proses atau masalah (kompleks) menjadi bagian-bagian yang lebih kecil atau menjadi tugas-tugas yang mudah dikelola. Misalnya memecah ‘Drive/Direktory’ dalam sebuah komputer berdasarkan komponen penyusunnya: File dan Direktory.
Pattern Recognition : Kemampuan untuk melihat persamaan atau bahkan perbedaan pola, tren dan keteraturan dalam data yang nantinya akan digunakan dalam membuat prediksi dan penyajian data. Misalnya mengenali pola file dokumen, file sistem, file eksekusion atau struktur data/file.
Abstraksi : Melakukan generalisasi dan mengidentifikasi prinsip-prinsip umum yang menghasilkan pola, tren dan keteraturan tersebut. Misalnya dengan menempatkan semua file sistem di folder Windows, file program di folder Program Files, file data/dokumen di Folder Mydocument dan file pendukung di Drive/Direktory terpisah.
Algorithm Design : Mengembangkan petunjuk pemecahan masalah yang sama secara step-by-step, langkah demi langkah, tahapan demi tahapan sehingga orang lain dapat menggunakan langkah/informasi tersebut untuk menyelesaikan permasalahan yang sama. Misalnya bagaimanakah langkah mencari file-file dokumen yang ada dalam sebuah komputer ?
3. Karakteristik berpikir komputasi
a. Mampu memberikan pemecahan masalah menggunakan komputer atau perangkat lain.
b. Mampu mengorganisasi dan menganalisa data.
c. Mampu melakukan representasi data melalui abstraksi dengan suatu model atau simulasi.
d. Mampu melakukan otomatisasi solusi melalui cara berpikir algoritma.
e. Mampu melakukan identifikasi, analisa dan implementasi solusi dengan berbagai kombinasi langkah / cara dan sumber daya yang efisien dan efektif.
f. Mampu melakukan generalisasi solusi untuk berbagai masalah yang berbeda.
Contoh Computational Thinking (CT) :
Bagaimanakah membuat “Browniz” yang lezat sebanyak 100 box dengan efektif dan efesien ?
Decomposition : Kemampuan memecah data, proses atau masalah (kompleks) menjadi bagian-bagian yang lebih kecil atau menjadi tugas-tugas yang mudah dikelola.
Misalnya memecah struktur komponen dasar pembentuk Browniz menjadi Tepung, Telur, Gula, Mentega, Coklat, Susu, Keju, Backing Powder, Air.
Misalnya memecah proses dasar pembuatan Browniz menjadi Penyiapan Bahan, Pencampuran Adonan, Pengembangan Adonan (emulsi), Memasak/Memanggang, Toping/Rias, Packing/Pengepakan
Pattern Recognition : Kemampuan untuk melihat persamaan atau bahkan perbedaan pola, tren dan keteraturan dalam data yang nantinya akan digunakan dalam membuat prediksi dan penyajian data.
Misalnya mengenali pola dan proses pembuatan 1 box kue Browniz yang dimulai dari tahap Persiapan hingga Packing memerlukan waktu 60 menit dengan menggunakan 1 unit oven.
60 menit = 1 Box atau 1 jam = 1 Box
Abstraksi : Melakukan generalisasi dan mengidentifikasi prinsip-prinsip umum yang menghasilkan pola, tren dan keteraturan tersebut.
Misalnya dengan melihat dan mengidentifikasi pola pembuatan browniz secara umum. Jika dalam 1 jam dengan 1 unit oven/pemanggang diperoleh 1 box browniz maka perlu 100 jam (4,16 hari) untuk menghasilkan 100 box browniz. Tentu tidak efektif dan efesien !
Karena proses pembuatan browniz ini merupakan proses yang berulang maka kita dapat melakukan generalisasi bahwa proses ini tidah harus menunggu semua proses selesai baru dilakukan dari awal. Dengan kata lain, saat kue browniz sudah masuk oven, kita dapat melakukan proses pembuatan adonan kembali tanpa harus menunggu hingga semua proses dilaksanakan.
Dengan demikian 60 menit >= 3 Box atau 1 jam >= 3 Box
Sehingga untuk menghasilkan 100 box browniz dengan 1 unit oven diperlukan waktu 33 jam atau 1,3 hari. Pertanyaan selanjutnya bagaimana jika kita sediakan 2 buah oven, maka jawabnya kita hanya memerlukan waktu 16,5 jam untuk menghasilkan 100 box Browniz.
Bagaimana bentuk persamaan matematikanya ? Bagaimana nilai ekonomis dan break even pointnya ? Bagaimana suhu oven yang paling baik ? Bahan (kimia/alami) pengembang adonan yang paling baik dan efektif ?
0 Komentar